S-structures for K-linear Categories and the Definition of a Modular Functor
نویسنده
چکیده
Motivation and background. Motivated by ideas from string theory and quantum field theory new invariants of knots and 3-dimensional manifolds have been constructed from complex algebraic structures such as Hopf algebras [17] [22], monoidal categories with additional structure [24], and modular functors [14] [23]. These constructions are closely related. Here we take a unifying categorical approach based on a natural 2-dimensional generalization of a topological field theory in the sense of Atiyah [1], and show that the axioms defining these complex algebraic structures are a consequence of the underlying geometry of surfaces.
منابع مشابه
On categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملFinitely semisimple spherical categories and modular categories are self - dual
We show that every essentially small finitely semisimple k-linear additive spherical category in which k = End(1) is a field, is equivalent to its dual over the long canonical forgetful functor. This includes the special case of modular categories. In order to prove this result, we show that the universal coend of the spherical category with respect to the long forgetful functor is self-dual as...
متن کاملAn equivalence functor between local vector lattices and vector lattices
We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...
متن کاملUsing Modular Pole for Multi-Objective Design Optimization of a Linear Permanent Magnet Synchronous Motor by Particle Swarm Optimization (PSO)
In this paper particle swarm optimization (PSO) is used for a design optimization of a linear permanent magnet synchronous motor (LPMSM) considering ultra low thrust force ripples, low magnet consumption, improved efficiency and thrust. The influence of PM material is discussed, too and the modular poles are proposed to achieve the best characteristic. PM dimensions and material, air gap and mo...
متن کاملOn the Definition and K-theory Realization of a Modular Functor
We present a definition of a (super)-modular functor which includes certain interesting cases that previous definitions do not allow. We also introduce a notion of topological twisting of a modular functor, and construct formally a realization by a 2dimensional topological field theory valued in twisted K-modules. We discuss, among other things, the N = 1-supersymmetric minimal models from the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998